Jacobians in isogeny classes of supersingular abelian threefolds in characteristic 2

نویسندگان

  • Enric Nart
  • Christophe Ritzenthaler
چکیده

We exhibit the isogeny classes of supersingular abelian threefolds over F2n containing the Jacobian of a genus 3 curve. In particular, we prove that for even n > 6 there always exist a maximal and a minimal curve over F2n . All the curves can be obtained explicitly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 4 Zeta functions of supersingular curves of genus 2

This paper was motivated by the problem of determining what isogeny classes of abelian surfaces over a finite field k contain jacobians. In [MN] we performed a numerical exploration of this problem, that led to several conjectures. We present in this paper a complete answer for supersingular surfaces in characteristic 2 (section 5). We deal with this problem in a direct way by computing explici...

متن کامل

Jacobians in isogeny classes of abelian surfaces over finite fields

We give a complete answer to the question of which polynomials occur as the characteristic polynomials of Frobenius for genus-2 curves over finite fields.

متن کامل

Some Calabi–yau Threefolds with Obstructed Deformations over the Witt Vectors

I construct some smooth Calabi–Yau threefolds in characteristic two and three that do not lift to characteristic zero. These threefolds are pencils of supersingular K3-surfaces. The construction depends on Moret-Bailly’s pencil of abelian surfaces and Katsura’s analysis of generalized Kummer surfaces. The threefold in characteristic two turns out to be nonrigid.

متن کامل

Pk-torsion of Genus Two Curves over 𝔽pm

We determine the isogeny classes of abelian surfaces over Fq whose group of Fq-rational points has order divisible by q . We also solve the same problem for Jacobians of genus-2 curves. In a recent paper [4], Ravnshøj proved: if C is a genus-2 curve over a prime field Fp, and if one assumes that the endomorphism ring of the Jacobian J of C is the ring of integers in a primitive quartic CM-field...

متن کامل

On the Existence of Supersingular Curves Of Given Genus

In this note we shall show that there exist supersingular curves for every positive genus in characteristic 2. Recall that an irreducible smooth algebraic curve C over an algebraically closed field F of characteristic p > 0 is called supersingular if its jacobian is isogenous to a product of supersingular elliptic curves. An elliptic curve is called supersingular if it does not have points of o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008